Capacity Bounds for the Cdma System and a Neural Network: a Moderate Deviations Approach

نویسندگان

  • MATTHIAS LÖWE
  • FRANCK VERMET
چکیده

We study two systems that are based on sums of weakly dependent Bernoulli random variables that take values ±1 with equal probabilities. We show that already one step of the so-called Soft-Decision Parallel Interference Cancellation, used in the third generation of mobile telecommunication CDMA, is able to considerably increase the number of users such a system can host. We also consider a variant of the well-known Hopfield model of neural networks. We show that this variant proposed by Amari and Yanai [2] has a larger storage capacity than the original model. Both situations lead to the question of the moderate deviations behavior of a sum of weakly dependent Bernoulli random variables. We prove a moderate deviations principle for such a sum on the appropriate scale. RÉSUMÉ. Nous étudions deux systèmes basés sur des sommes de variables aléatoires de Bernoulli valant ±1 avec égale probabilité et faiblement dépendantes. Nous montrons qu’une seule étape de la méthode de suppression d’interférences SD-PIC, utilisée dans la troisième génération de télécommunication mobile CDMA, permet déjà d’augmenter considérablement le nombre d’utilisateurs supporté par le système. Nous considérons également une variante du modèle neuronal de Hopfield. Nous montrons que cette variante, proposée par Amari et Yanai [2], admet une capacité de stockage supérieure au modèle original. Les deux situations conduisent à l’étude des déviations modérées d’une somme de variables aléatoires de Bernoulli faiblement corrélées. Nous montrons un principe de déviations modérées pour une telle somme convenablement normalisée.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Capacity Evaluation for CDMA Cellular Networks

In this paper, we find bounds and approximations for the capacity of mobile cellular communication networks based on Code Division Multiple Access (CDMA). We develop efficient analytic techniques for capacity calculations of CDMA cellular networks. Each cell is modeled as an independent M=G=1 queue and traffic capacity assessed based on the maximum Erlang traffic that leads to acceptable link q...

متن کامل

Capacity Evaluation for CDMA Cellular Systems

In this paper, we find bounds and approximations for the capacity of mobile cellular communication networks based on Code Division Multiple Access (CDMA). We develop efficient analytic techniques for capacity calculations of CDMA cellular networks. Each cell is modeled as an independent M=G=1 queue and traffic capacity assessed based on the maximum Erlang traffic that leads to acceptable link q...

متن کامل

Throughput Improvement of STS-Based MC DS-CDMA System with Variable Spreading Factor

The throughput enhancement of Space-Time Spreading (STS)-based Multicarrier Direct Sequence Code Division Multiple Access (MC DS-CDMA) system is investigated in this paper. Variable Spreading Factor (VSF) is utilized to improve the data throughput of the system. In this contribution, an analytical approach is proposed to compute a new expression for the Bit Error Rate (BER) performance of t...

متن کامل

Distillation Column Identification Using Artificial Neural Network

  Abstract: In this paper, Artificial Neural Network (ANN) was used for modeling the nonlinear structure of a debutanizer column in a refinery gas process plant. The actual input-output data of the system were measured in order to be used for system identification based on root mean square error (RMSE) minimization approach. It was shown that the designed recurrent neural network is able to pr...

متن کامل

Artifcial neural network approach for the prediction of terminal falling velocity of non-spherical particles through Newtonian and non-Newtonian fluids

The investigation of the terminal falling velocity of non-spherical particles is currently one of the most promising topics in sedimentation technology due to its great signifcance in many separation processes. In this study, the potential of Artifcial Neural Networks (ANNs) for the prediction of nonspherical particles terminal falling velocity through Newtonian and nonNewtonian (power law) liq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008